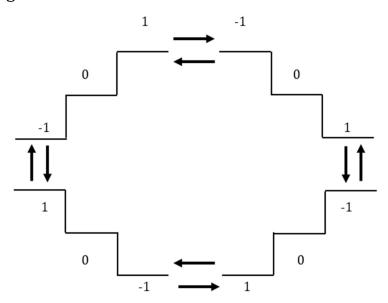
Prof. Dr. Alfred Toth

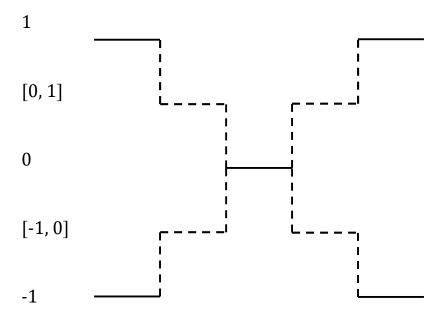
Kaskaden von P-Zahlen

1. Wie in Toth (2025a) ausgeführt, können P-Zahlen (vgl. Toth 2025b) in Q-Zahlen eingebettet (Toth 2025c) und in quadralektischen Zahlenfeldern (Toth 2025d) gezählt werden.



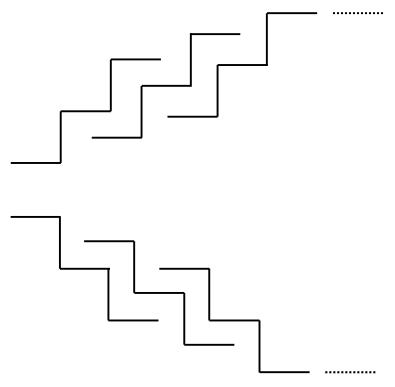
2. Nun wurde in Toth (2025e) gezeigt, daß es zwischen den P = (-1, 0, 1) weitere P-Zahlen gibt (die vermutlich Kontinua bilden). Wir hatten sie als P-Vermittlungszahlen eingeführt. Da nach Toth (2025a) zwischen äußeren, inneren und Randzahlen zu unterscheiden ist, präsentieren sich die P zugeordneten Q-Zahlen in dem folgenden System:

und man kann daher je zwei gegenübrtstehende Zahlen im quadralektischen Zahlenfeld in einem durch die P-Vermittlungszahlen erweiterten P-System so anordnen, daß der folgende Graph entsteht, der selbst ebenfalls vermittelt ist.



Um es noch deutlicher zu sagen: In diesem Graphen sind sowohl die P-Zahlen als auch die beiden Teilgraphen, d.h. die steigende (links) und die fallende Kaskade, vermittelt.

3. Diese doppelte Vermittlung, d.h. die Intra-P- und die Trans-P-Vermittlung, kann man nun selbst wiederum vermitteln. Fährt man also in der angegebenen Weise fort, bekommt man vier quadralektisch vermittelte Kaskaden doppelt vermittelter P-Relationen, deren zwei Basistypen die folgende Form haben.



Die Struktur der Kaskaden ist also $K=(k_i{}^j,k_{i\pm1}{}^{j\pm1},k_{i\pm2}{}^{j\pm2},...k_{im}{}^{jn})$. D.h. die Zwischenstufen steigen oder fallen an den zweidimensionalen Orten der P-

Vermittlungszahlen und generieren damit weitere P-Vermittlungszahlen. Bereits in Toth (2025e) hatten wir folgende Matrix von P²-Vermittlungszahlen gegeben:

	-1i	η^{i}	0 ⁱ	ϑ^{i}	1i
-1 ⁱ	(-1i1i)	$(-1^i. \eta^i)$	$(-1^{i}.0^{i})$	$(-1^i.\vartheta^i)$	(-1i. 1i)
$\eta^{\rm i}$	(η ⁱ 1 ⁱ)	$(\eta^i.\eta^i)$	$(\eta^i. 0^i)$	$(\eta^i.\vartheta^i)$	$\left(\eta^{i}.\ 1^{i}\right)$
0^{i}	$(0^{i}1^{i})$	$(0^i$. η^i)	$(0^{i}. 0^{i})$	$(0^i.\vartheta^i)$	$(0^{i}. 1^{i})$
ϑ^{i}	(ϑ^i1^i)	$(\vartheta^i.\eta^i)$	$(\vartheta^i.\ 0^i)$	$(\vartheta^i.\vartheta^i)$	$(\vartheta^i. 1^i)$
1 ⁱ	$(1^{i}1^{i})$	$(1^i.\eta^i)$	$(1^{i}.0^{i})$	$(1^i.\vartheta^i)$	$(1^{i}. 1^{i}).$

Diese sind jedoch nur die I- oder internen Zahlen. Dazu kommen somit zwei weitere Matrizen für die A- oder externen und für die R- oder Randzahlen. Genau diese Zahlen sind es also, die wir zur Berechnung der im obigen gestuften quadralektischen Zahlenfeld aufscheinenden P-Zahlen benötigen.

Literatur

Toth, Alfred, Äußere und innere Zahlen. In: Electronic Journal for Mathematical Semiotics, 2025a

Toth, Alfred, Strukturtheorie possessiv-copossessiver Zahlen. In: Electronic Journal for Mathematical Semiotics, 2025b

Toth, Alfred, Quadralektische Zahlen. In: Electronic Journal for Mathematical Semiotics, 2025c

Toth, Alfred, Quadralektische Zahlenfelder. In: Electronic Journal for Mathematical Semiotics, 2025d

Toth, Alfred, Possessiv-copossessive Vermittlungszahlen. In: Electronic Journal for Mathematical Semiotics, 2025e

19.3.2025